On the Equivalence of Location Choice Models: Conditional Logit, Nested Logit and Poisson

نویسندگان

  • KURT SCHMIDHEINY
  • MARIUS BRÜLHART
  • Marius Brülhart
چکیده

It is well understood that the two most popular empirical models of location choice conditional logit and Poisson return identical coefficient estimates when the regressors are not individual specific. We show that these two models differ starkly in terms of their implied predictions. The conditional logit model represents a zero-sum world, in which one region's gain is the other regions' loss. In contrast, the Poisson model implies a positive-sum economy, in which one region's gain is no other region's loss. We also show that all intermediate cases can be represented as a nested logit model with a single outside option. The nested logit turns out to be a linear combination of the conditional logit and Poisson models. Conditional logit and Poisson elasticities mark the polar cases and can therefore serve as boundary values in applied research. JEL Code: C25, R30, H73.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Nesting Location Choice Models Correctly: A Reply to Herger and McCorriston

As shown by Guimaraes, Figueiredo and Woodward (2003), a particular class of conditional logit models yield identical parameter estimates to a Poisson count data model. In Schmidheiny and Brülhart (2011), we have pointed out that the conditional logit model and the Poisson model can be seen as polar cases of a continuum of intermediate cases which emerge from a random utility nested logit model...

متن کامل

Probit and nested logit models based on fuzzy measure

Inspired by the interactive discrete choice logit models [Aggarwal, 2019], this paper presents the advanced families of discrete choice models, such as nested logit, mixed logit, and probit models to consider the interaction among the attributes. Besides the DM's attitudinal character is also taken into consideration in the computation of choice probabilities. The proposed choice models make us...

متن کامل

Working Paper Series Categorical Data Categorical Data

Categorical outcome (or discrete outcome or qualitative response) regression models are models for a discrete dependent variable recording in which of two or more categories an outcome of interest lies. For binary data (two categories) probit and logit models or semiparametric methods are used. For multinomial data (more than two categories) that are unordered, common models are multinomial and...

متن کامل

On Rank-Ordered Nested Multinomial Logit Model and D-Optimal Design for this Model

In contrast to the classical discrete choice experiment, the respondent in a rank-order discrete choice experiment, is asked to rank a number of alternatives instead of the preferred one. In this paper, we study the information matrix of a rank order nested multinomial logit model (RO.NMNL) and introduce local D-optimality criterion, then we obtain Locally D-optimal design for RO.NMNL models in...

متن کامل

Probabilistic Choice Models

This chapter examines different models commonly used to model probabilistic choice, such as eg the choice of one type of transportation from among many choices available to the consumer. Section 1 discusses derivation and limitations of conditional logit models. Section 2 discusses probit models and Section 3 discusses the nested logit (generalized extreme value models), which address some of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009